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Abstract

The episodic nature of hydrological flows such as surface runoff and preferential flow
is a result of the nonlinearity of their triggering and the intermittency of rainfall. In this
paper we examine the temporal dynamics of threshold processes that are triggered
by either an infiltration excess (IE) mechanism when rainfall intensity exceeds a spec-5

ified threshold value, or a saturation excess (SE) mechanism governed by a storage
threshold. We analytically derive probabilistic measures of the time between succes-
sive events in each case, and in the case of the SE triggering, we relate the statistics of
the time between events to the statistics of storage and the underlying water balance.
In the case of the IE mechanism, the temporal dynamics of flow events is shown to be10

simply scaled statistics of rainfall timing. In the case of the SE mechanism the time
between events becomes structured. With increasing climate aridity the mean and the
variance of the time between SE events increases but temporal clustering, as mea-
sured by the coefficient of variation (CV) of the inter-event time, reaches a maximum in
deep stores when the climatic aridity index equals 1. In very humid and also very arid15

climates, the temporal clustering disappears, and the pattern of triggering is similar to
that seen for the IE mechanism. In addition we show that the mean and variance of the
magnitude of SE events decreases but the CV increases with increasing aridity. The
CV of inter-event times is found to be approximately equal to the CV of the magnitude
of SE events per storm only in very humid climates with the CV of event magnitude20

tending to be much larger than the CV of inter-event times in arid climates. In com-
parison to storage the maximum temporal clustering was found to be associated with
a maximum in the variance of soil moisture. The CV of the time till the first saturation
excess event was found to be greatest when the initial storage was at the threshold.
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1 Introduction

Hydrological processes which result from highly nonlinear, threshold like mechanisms
include interception (Savenije, 2004; Crockford and Richardson, 2000), hillslope out
flow via subsurface pathways (Whipkey, 1965), preferential flow (Beven and Germann,
1982), Hortonian overland flow, saturation excess overland flow (Dunne, 1978), and5

erosion (Fitzjohn et al., 1998) amongst others. These processes occur episodically due
to their threshold-like response to intermittent rainfall. We define episodic processes
as short lived discrete events that are not triggered for every single rainfall event.

There is much hydrological theory and modelling devoted to the prediction of the flux
of water and solutes in soils at the field and larger scales (Bresler and Dagan, 1982;10

Roth and Jury, 1993; Jarvis et al., 1994) and while our understanding of the mechanics
of many hydrological processes is reasonably well developed (Dunne, 1978; Parlange
and Hill, 1976; Beven and Germann, 1982), hydrological prediction of the fluxes still
suffers from high uncertainty (Zak and Beven, 1999; Minasny and McBratney, 2002).

The dynamics of episodic hydrological events driven by rainfall can also be ex-15

pressed in terms of the timing of their triggering. However, this aspect of the dynamics
is poorly understood. Given the difficulty in predicting the fluxes accurately, there is
a need to quantify the temporal dynamics of such processes in terms of storm and
climate properties. Additionally there is as yet little understanding of the relationship
between the fluxes and the timing of the runoff events which are clearly linked through20

soil moisture storage. Improved understanding with respect to the last two points are
the main objectives of the work presented here.

In this paper we introduce a generic analysis, quantifying how the temporal dynamics
of these episodic events emerges from the rainfall signal as a result of the nonlinearity
of the intervening hydrological process. This nonlinear or threshold filtering is assessed25

by the statistical properties of the time it takes to trigger an event for the first time and
the time between successive events. We then go on to compare how the statistical
properties of runoff fluxes and the timing of the triggering of events vary with respect to

2855

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/2853/2006/hessd-3-2853-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/2853/2006/hessd-3-2853-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 2853–2897, 2006

Temporal dynamics
of threshold events

G. McGrath et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

storm properties and the climate setting.

1.1 Threshold triggers

The initiation of fast flow such as surface runoff and rapid preferential flow is either
caused by infiltration excess or a storage (saturation) excess mechanism. For example
macropore flow can be triggered at the soil surface by high rainfall intensities that are5

in excess of the infiltration capacity of the soil matrix, while surface runoff occurs when
infiltration capacity of both the soil matrix and the macropores are exceeded (Beven
and Germann, 1982). Alternatively, macropore flow can be initiated when the soil ma-
trix becomes saturated allowing water to move from the matrix into large voids (Beven
and Germann, 1982; Simunek et al., 2003).10

Other flow processes are similarly triggered by thresholds in storage and / or storm
amount. These include various types of preferential flow (Dekker et al., 2001; Bauters,
2000; Wang et al., 1998; Kung, 1990; Haria et al., 1994; Heppell et al., 2002; Beven and
Germann, 1982), canopy interception (Crockford and Richardson, 2000; Zeng et al.,
2000), and hillslope outflow through subsurface flow pathways (Whipkey, 1965; Mosley,15

1976; Uchida et al., 2005; Tromp-van Meerveld and McDonnell, 2006).
The temporal dynamics of preferential flow triggering due to between-storm and

within-storm rainfall variability has been previously explored via the numerical simula-
tion approach using synthetic rainfall time series (Struthers et al., 2006a,b). Struthers
et al. (2006b) were able to relate the pdf and specific statistical characteristics of the20

storm inputs to statistical properties and pdfs of runoff magnitude and timing of the
runoff events. The analysis was not able to separate the contributions of the various
runoff mechanisms to the statistical properties of the resulting temporal flow dynamics.

In this article we examine two extreme but simple conceptualisations of nonlinear
flow triggering: the first, an infiltration excess mechanism, is based on a threshold25

rainfall intensity (Kohler et al., 2003) neglecting any soil moisture storage controls.
The second mechanism represents the other, opposite extreme, a saturation excess
mechanism, based upon a threshold storage, depending only on the storm amount and
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not its intensity. This mechanism captures the carry over of storage from one rainfall
event to the next. As a result there is an enhanced probability that a second flow event
will occur shortly after a flow event has just occurred because storage is more likely
to be nearer the threshold in this interval. We hypothesise that temporal clustering of
saturation excess events is a characteristic of the rainfall filtering, which means that5

multiple events occur in short periods of time separated by longer event-free intervals.

1.2 Outline

The paper begins with a brief overview of the simple models of rainfall adopted for
this analysis. Based upon this we derive analytically the statistics of the time between
threshold events for infiltration excess and saturation excess mechanisms, and for sat-10

uration excess we also present existing and newly derived statistics of the runoff flux
based upon the original work of Milly (1993, 2001). Finally, we explore the results in
the context of storm properties and the climate setting.

2 Rainfall models

For modelling purposes we adopt simple stationary descriptions of rainfall without any
seasonal dependence. Storms are characterised only by three parameters, their total
depth h [L], a maximum within-storm intensity Imax [L/T], and an inter-storm time tb [T].
Storms are considered to be instantaneous events, independent of one another, there-
fore satisfying the Poisson assumption as used commonly in hydrology (Rodriguez-
Iturbe et al., 1999; Milly, 1993). Such an assumption is considered valid at near daily
time scales (Rodriguez-Iturbe and Isham, 1987). This implies that the random time
between storms, the inter-storm time, that results is described by an exponential prob-
ability density function (pdf) (Rodriguez-Iturbe et al., 1999):

gTb [x] =
1

t̄b
e−x/t̄b (1)
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which is fully characterised by its mean t̄b [T]. Storm depths are also assumed to follow
an exponential pdf fH [h] with a mean γ [L]. The maximum within-storm rainfall intensity
is also considered to be exponentially distributed with a mean of ς [L/T].

3 Statistics of temporal dynamics

Based on the rainfall signal and soil properties we would like to quantify the probability5

that a given flow event, involving the exceedance of some kind of threshold, occurs.
We use the time between events as the random variable that characterises this event
probability. This concept is illustrated for a rainfall intensity threshold (Fig. 1a) and a
soil moisture storage threshold (Fig. 1b). The random time to reach these thresholds
for the first time is referred to as a first passage time (FPT) denoted as τ1, and the time10

between flow events is referred to as the inter-event time (IET) denoted as τ2 and τ3
in Fig. 1a and Fig. 1b. In the case of infiltration excess runoff, a flow event is triggered
when the maximum rainfall intensity within a storm exceeds the infiltration capacity Iξ .
In contrast, when the soil water storage reaches a critical capacity a saturation excess
event is deemed to have been triggered.15

To quantify the probability density functions of the first passage times and the inter-
event times, we use the first four central moments. For completeness we define the
moments in this section and will derive analytical expressions for them in Sect. 5.2 and
Appendix A. The mean Tµ [T] and the kth central moment µk of the random variable τ
are related to the pdf gT [τ] by the following (Papoulis, 2001):

Tµ = E [τ] =
∫ ∞
−∞

τ gT [τ] dτ (2)

µk = E
[
(τ − E [τ])k

]
=
∫ ∞
−∞

(
τ − Tµ

) k gT [τ] dτ (3)
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for integers k≥2, where E [ ] denotes the expectation operator. In addition to the

mean and the variance Tσ2=µ2

[
T2
]
, we will also use the dimensionless statistic, the

coefficient of variation Tcv=
√
Tσ2

/
Tµ [−], the ratio of the standard deviation to the

mean, which gives a measure of the variability relative to the mean; the coefficient

of skewness Tε=µ3
/
µ2

3/2 [−], which describes the asymmetry of the probability dis-5

tribution, where positive values indicate that the distribution has a longer tail towards
larger values than smaller values; and the coefficient of kurtosis Tκ=µ4

/
µ2

2−3 [−],
where positive values indicate a more peaked distribution, in comparison to a normally
distributed variable, and “fatter tails” i.e. an enhanced probability of extreme values
(Papoulis, 2001).10

In order to compare the statistical properties of flow event triggers with the rainfall
signal, we summarise here the rainfall in terms of IET statistics. The idea here is to
compare and contrast inter-storm and inter-event statistics for the various threshold
driven processes. Events which are temporally independent of one another, such as
our model rainfall, have an exponential IET pdf. Table 1 lists the statistics for the inter-15

storm time.
A property of the exponential distribution, which describes the inter-event time of

independent events, is that the mean is equal to the standard deviation, and therefore
the coefficient of variation is equal to 1. The coefficient of variation of the inter-event
time Tcv is often used to distinguish temporally clustered and unclustered processes20

(Teich et al., 1997). Temporal clustering is said to occur when Tcv>1, a Tcv=0 indicates
no variability and exactly regular events, while a Tcv<1 may indicate a quasi-periodic
process (Godano et al., 1997; Wood et al., 1995).

4 Infiltration excess inter-event time statistics

Here we assume for simplicity that the infiltration capacity Iξ is constant (Kohler et al.,25

2003), and therefore soil moisture controls on the infiltration capacity are considered
2859
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insignificant. This approach provides an extreme contrast to the saturation excess
mechanism considered. It may actually represent well more extreme rainfall where the
antecedent soil moisture has little impact on event triggering. For example Heppell
et al. (2002) classified preferential flow events in a clay loam soil as antecedent soil
moisture limited and non-antecedent limited events. The non-antecedent limited events5

were related to storms where the maximum within-storm rainfall intensity was much
larger than the mean storm intensity.

This constant threshold filtering is the same as the rainfall filtering described in
Rodriguez-Iturbe et al. (1999) in the context of the soil water balance. They showed
that a threshold filtering of Poisson rainfall resulted in a new Poisson process with an10

event rate equal to the storm arrival rate multiplied by the probability of exceeding the
threshold (Rodriguez-Iturbe et al., 1999). For the infiltration excess trigger, when the
maximum within-storm rainfall intensity Imax is exponentially distributed with mean ς
the probability that Imax>Iξ is equal to e−Iξ/ς and therefore the resulting mean time be-

tween threshold intensity events is equal to T I
µ=t̄be

Iξ/ς . Table 1 lists the IET statistics15

that result for this process.
A soil with an infiltration capacity twice the mean maximum within-storm rainfall in-

tensity results in a mean IET which is e2 times longer than the mean inter-storm time
t̄b, and a variance e4 times greater than the inter-storm time variance t̄2

b . The higher
central moments remain unchanged. The threshold driven infiltration excess filtering20

therefore results in temporal dynamics that are statistically the same as the rainfall’s,
but scaled by a factor related to the single event probability of exceeding the threshold.
This is illustrated in Fig. 2a, which is a semi-log plot of an example infiltration excess
IET pdf, corresponding to the above example, shown in comparison to the rainfall IET
pdf.25
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5 Saturation excess filtering

In this section saturation excess is described on the basis of Milly’s (1993) nonlinear
storage-runoff model. Milly used this model to describe the impact of rainfall intermit-
tency and soil water storage on runoff generation at catchment scales, and which he
successfully used to capture much of the spatial variability in the annual water balance5

in catchments across much of continental USA (Milly, 1994). We use this minimalist
framework to model the triggering of runoff by the exceedance of a threshold value of
storage. We first review his analytical results for the statistics of soil moisture storage
and the mean water balance components. We then go on to derive from these results
the variance of the saturation excess runoff flux on a per storm basis. We will later re-10

late these statistics to those of the temporal dynamics of saturation excess triggering.

5.1 Storage and the water balance

Milly’s (1993) water balance model is represented in terms of a simple bucket with a
fixed storage capacity w0 [L] which wets in response to random storm events and dries
in the inter-storm period, of random duration, due to a constant evaporative demand
Em [L/T]. The threshold soil moisture (sξ=1 [-]) for flow initiation is assumed to have
been reached when the store is filled to capacity. Any excess rainfall becomes sat-
uration excess. The resulting stochastic balance equation for water storage s [-] (a
dimensionless storage normalised by w0) is:

ds
dt

= −L [s] + F [s, t] (4)

where t [T] denotes time, L [s]
[
T−1
]

the (normalised by w0) evaporative losses from

storage. F [s, t] [−] denotes instantaneous random infiltration events (normalised by
w0), occurring at discrete times ti . Infiltration is limited by the available storage capacity
i.e. F [s, ti ]=min

[
1−s−i , hi

/
w0
]
, where s−i [−] denotes the antecedent soil moisture
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and hi [L] the random storm depth. Evaporation losses are given by:

L [s] =


0 for s = 0

Em
w0

for 0 < s ≤ 1
(5)

In this article we largely consider the transformation of Eq. (4) directly into the sta-
tistical properties of inter-event times, however we discuss briefly here how to nu-
merically simulate a storage time series. This is done in part to help explain the
conceptualisation of the process as well as to describe how we generated exam-
ple time series presented in Sect. 6.3.1. Simulation involves generating a random5

inter-storm time tb and a subsequent storm depth h from their respective probability
distributions. Storage at any time t in the inter-storm period can be calculated from
s [t]=max

[
0, s0−Em(t − t0)/w0

]
, where t0 is the time of the last storm when soil mois-

ture was s0. At the end of the inter-storm time ti=t0+tb storage immediately prior to
the storm is given by s−i . Storage increases from s−i to s+i =min

[
1, s−i +h/w0

]
due to10

the storm also at a time ti . This occurs as an instantaneous event with storage tak-
ing on two separate values immediately either side of time ti . The simulation is then
continued with s+i as the new s0 and so on.

From the above model and the characteristics of rainfall presented before, two sim-
ilarity parameters can be defined: the supply ratio α=w0

/
γ, the ratio of storage ca-15

pacity to mean storm depth, and the demand ratio β=w0
/ (

Emt̄b
)
, the ratio of storage

capacity to mean potential inter-storm evaporation (Milly, 1993). When α=0 the rainfall
supply is infinitely larger than storage capacity and when α=∞ the supply is negligible
compared to the amount in storage at capacity. Similarly β=0 indicates infinite evapo-
rative demand and β=∞ negligible demand relative to the storage capacity. Typically20

one could expect the parameters to range from about 1 to 100 depending upon the pro-
cess considered. For example a thin near surface water repellent layer with 10 mm of
storage could have realistic α values of 1 to 10 depending upon the mean storm depth.
Runoff controlled by storage throughout the rooting depth may have much larger values
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(Milly, 2001).
The ratio AI=

(
Emt̄b

)/
γ=α

/
β defines the relative balance between mean potential

inter-storm evaporation and the mean storm depth and is otherwise known as the cli-
matic aridity index. An AI<1 describes a humid climate, AI>1 an arid climate and AI=1
defines equal mean rainfall and mean potential evaporation.5

Milly (1993) derived the pdf of water storage in the form of two derived distributions
of storage: one for a time immediately before a storm fS− , the antecedent storage pdf,
and one immediately after a storm fS+ . The pdf for storage for all times fS , that resulted
from that analysis was found to be equal to fS− (Milly, 2001). This was essentially
because storms were modelled as instantaneous events, with no duration, and the
expected arrival time of the next storm was a memoryless Poisson process. The pdf of
fS is given by:

fS = pβ e(α−β)s + qδ [s] (6)

where δ denotes the Dirac delta function, p describes the probability storage is at
capacity (s=1), and q the probability that the soil is dry (s=0) and are given by:

p =
α − β

α eα−β
q =

β − α

β eβ−α − α

The resulting mean Sµ and variance Sσ2 of storage are given by Eq. (7) and Eq. (8)
respectively (Milly, 2001):

Sµ =
1

α − β
+

1 + β eβ−α

β eβ−α − α
(7)

Sσ2 =
1

(α − β)2
−

1 + (α + 2)β eβ−α(
β eβ−α − α

)2 (8)
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Based on the definition of the expected value of a function g [x] of a random variable
x , with a known pdf fX [x] (Papoulis, 2001):

E [g [x]] =
∫ ∞
−∞

g [x] fX [x] dx (9)

Milly (1993) derived the mean actual evaporation Ea [L] per inter-storm period via:

Ea

γ
=

w0

γ

∫ 1

0−
L [s] fS [s] ds = 1 − α − β

α eα−β − β
(10)

where the 0− is used to denote inclusion of the probability that s = 0.
From mass balance considerations Milly (1993) then determined the mean runoff per

storm Qµ [L] as follows:
Qµ

γ
= 1 −

Ea

γ
=

α − β

αeα−β − β
(11)

Extending such analysis, we derive here for the first time the variance of flux per

storm event Qσ2

[
L2
]

which we calculate from the definition of the variance of a function

of two random variables G [x, y ] which have a joint pdf fXY [x, y ] (Papoulis, 2001) which
is given by:

E
[
(G [x, y ] − E [G [x, y ]])2

]
=
∫ ∞
−∞

∫ ∞
−∞

(G [x, y ] − E [G [x, y ]])2 fXY [x, y ] dx dy (12)

The magnitude of saturation excess generated on a single event Qi is given by:

Qi
[
hi , s

−
i

]
= max

[
0, hi − w0

(
1 − s−i

)]
(13)

which depends upon the two random variables, storm depth hi and the antecedent
soil moisture s−i . As the pdf of soil moisture immediately prior to a rainfall event fS−
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is equivalent to the pdf of soil moisture fS (Eq. 6) in this instance (Milly, 2001) and as
h and s− are independent random variables we can apply Eq. (12) and the condition
Eq. (13) to the calculation of the saturation excess runoff variance Qσ2 by the following:

Qσ2

γ2
=
∫ 1

0−

∫ ∞
w0(1−s)

(
w0

γ

(
h
w0

− 1 + s
)
−

Qµ

γ

)2

w0fH [h] fS [s] dh ds +

∫ 1

0−

∫ w0(1−s)

0

(
−
Qµ

γ

)2

fH [h]w0fS [s] dh ds

=
(α − β)

(
2α eα−β − α − β

)
(
α eα−β − β

)2 (14)

5.2 Statistics of saturation excess timing

For the type of stochastic process modelled by Milly (1993) (a shot noise process), Laio5

et al. (2001) and Masoliver (1987) provided derivations for the mean time to reach a
threshold for the first time. This methodology was subsequently applied to describe the
mean duration of soil moisture persistence between upper and lower bounds in order
to investigate vegetation water stress (Ridolfi et al., 2000).

The mean first passage time describes the expected waiting time till an event, of10

which the mean inter event time is a special case. However the temporal dynamics
also consists of the variability about this mean behaviour, therefore in Appendix A we
present, for the first time, an extension of the derivation for the mean first passage time
(Laio et al., 2001) giving a general solution to the higher moments of the FPT, such as
the variance.15

Using Eqs. (A5), (A13) and (A10), with n=1 , T0=1 and L [s] as given by Eq. (5) we
can derive the mean time T s

µ
[
s0, sξ

]
till an arbitrary threshold storage sξ is reached for
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the first time, when the initial storage was s0≤sξ as:

T s
µ
[
s0, sξ

]
t̄b

=
α
(
αesξ(α−β) − βes0(α−β)

)
(α − β)2

−
β
(
α
(
sξ − s0

)
+ 1
)

α − β
(15)

This is the same result, after appropriate adjustment of parameters, as given by
Eq. (31) in Laio et al. (2001). The mean saturation excess IET T s

µ [1,1] comes from
substitution of s0=sξ=1 in Eq. (15):

T s
µ [1, 1]

t̄b
=

αeα−β − β
α − β

(16)

As a result of our more general derivation we can use Eq. (A5), (A13) and (A10)
together with n=2, and T1=T

s
µ
[
s0, sξ

]
, to derive the raw moment T2. From the rela-

tionship between the central moments and the raw moments (see Table A1), the FPT
variance is calculated by T s

σ2

[
s0, sξ

]
=T2 − T 2

1 . After substitution of s0=sξ=1 we can5

show the variance of IET arising from the storage threshold, T s
σ2 [1, 1] is given by:

T s
σ2 [1,1]

t̄2
b

=
2αβeα−β (α + β + 2)

(β − α)2
+

(α + β)
(
β2 − α2e2(α−β)

)
(β − α)3

(17)

In this paper we do not present the full solution for T s
σ2

[
s0, sξ

]
or the other

higher moments as they are rather cumbersome; however complete solutions
for the first four moments are provided as supplementary material (http://www.
hydrol-earth-syst-sci-discuss.net/3/2853/2006/hessd-3-2853-2006-supplement.pdf).10

Table 2 summarises the first four central moments of the IET for three limiting cases,
as discussed in more detail in the next section.
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6 Results and discussion

6.1 Climate controls on threshold storage events

This section discusses the analytical results for the statistical properties of the time
between threshold storage events and the statistics of the event magnitudes based on
an investigation of three limiting climates: an extremely humid climate with an aridity5

index AI=0 by taking the limit α→0 of the derived statistics; an extremely arid climate
with an aridity index AI=∞ by taking the limit β→0; and an intermediate climate with
AI=1 by taking the limit β→α. The analytical results corresponding to these limiting
cases are summarised in Table 2.

6.1.1 Humid climates: AI=010

In very humid climates the temporal statistics of saturation excess inter-event times are
identical to that of the rainfall (see Table 2). This is because with an excess supply of
rainfall and negligible evaporative demand the soil is always saturated. The statistics
are consistent with an inter-event time which is exponentially distributed. No filtering
takes place as every rainfall event triggers flow and all rainfall becomes saturation15

excess (see Table 2). The rainfall signal is therefore an excellent indicator of the timing,
frequency and magnitude of saturation excess triggered flow events.

6.1.2 Arid climates: AI=∞

The IET statistics of saturation excess events for an arid climate (Table 2) resemble
those of the infiltration excess filtering described above (refer to Table 1). The av-20

erage rate of storage threshold events is scaled by the probability of filling the store
completely in a single event i.e. by P

[
h>w0

]
=e−w0/γ=e−α. For example, consider a

water repellent soil with a distribution layer which triggers finger flow after a critical wa-
ter content (Dekker et al., 2001) equivalent to 10 mm of storage. In an extremely arid
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climate (β≈0) with a mean rainfall depth per storm of 2 mm (α=5), and a mean time
between storms t̄b=5 days, the resulting mean and variance of the preferential flow IET
is 5e5 days and 25e10 days2 respectively. Again the statistics are consistent with an
IET which is exponentially distributed. The independence of events is maintained be-
cause soil moisture is completely depleted before every rainfall event. In this instance a5

simple filtering of the rainfall, for h>w0, provides a good predictor of the timing, relative
frequency and magnitude of storage threshold flow events.

The mean saturation excess magnitude Qµ is also proportional to the mean storm
depth scaled by the probability of filling the store on a single event (see Table 2).
However unlike the simple threshold filtering as described by the temporal dynam-10

ics the variance of the magnitude of saturation excess events per storm Qσ2 is larger
than would be expected for an exponentially distributed random variable with the given
mean. We believe this is due to the fact that the statistic includes a large number of
zero values where storms do not trigger a threshold storage event. A coefficient of vari-
ation of event magnitude Qcv=

√
2eα−1 indicates that in the limit of a very arid climate15

the relative variability of the magnitude of these events increases with increasing stor-
age capacity and decreasing storm depth (increasing α ). For the example described
above (α=5) the mean, variance and coefficient of variation of event magnitudes are
equal to Qµ=0.013 mm Qσ2=0.054 mm2 and Qcv=17.2 respectively.

6.1.3 A balanced climate: AI=120

For the case when demand balances supply (AI=1), the mean time between storage
threshold events is 1 + α times greater than the mean time between storms t̄b and

the variance is 2
(
α3+2α2+2α+1

)/
3 times greater than the variance of inter-storm

times t̄2
b (see Table 2). To put this into context using the example described above for a

water repellent soil i.e. w0=10 mm, γ=2 mm per storm (α=5), and say Em=2 mm/day25

and t̄b=1 day (β=5), results in T s
µ [1, 1]=6 days, T s

σ2 [1,1]=124 days2, T s
cv [1,1]=1.86,

T s
ε [1,1]=644, and T s

κ [1, 1]=17.7. In comparison the rainfall has T r
µ [1,1]=1 day,
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T r
σ2 [1, 1]=1 day, T r

cv [1, 1]=1 , T r
ε [1,1]=2 , and T r

κ [1, 1]=6 (refer to Table 2). The
coefficient of variation of saturation excess inter-event times, being greater than 1, is
indicative that the process is temporally clustered.

Unlike the filtering that is associated with the infiltration excess runoff generation
mechanism described before, the storage threshold filtering changes the form of the5

probability distribution of inter-event times. Figure 2b shows conceptually how the sat-
uration excess inter-event time pdf changes from an exponential form in very humid
climates (the same pdf as the rainfall inter-event time) to a more peaked, fatter tailed
distribution at AI=1, reverting to an exponentially distributed variable again at AI=∞.
Interestingly it can be seen for the parameters chosen that extreme IETs are actually10

more probable when AI=1 than when AI=∞.
Referring again to the IET statistics for AI=1 (Table 2), as the storage capacity

increases, relative to the supply and demand, (i.e. increasing α) the mean storage
threshold IET increases, as does the variance and this increases faster than the square
of the mean, which results in an increase in the coefficient of variation. Therefore the15

clustering of events in time tends to increase with increasing storage capacity. Ad-
ditionally increasing storage capacity, relative to mean rainfall and evaporation, leads
to an increased coefficient of skewness and coefficient of kurtosis indicating a more
strongly peaked, fatter tailed pdf. This suggests both an increased likelihood of rela-
tively short IETs (increased peakiness) while at the same time an increased likelihood20

of much longer IETs (more skewed and fatter tailed). Such behaviour is characteristic
of our earlier definition of temporal clustering. For clarity and brevity we restrict further
discussion to the first two moments only, allowing us to describe the average IET, the
variability as well as the temporal clustering by the coefficient of variation.

The mean and the variance of the event magnitude decrease, and the coefficient of25

variation increases with increasing storage capacity (larger α), or equal decreases in
mean storm depth and mean inter-storm evaporation (see Table 2). For the example
described above the mean, variance and coefficient of variation of the event magnitude
are equal to Qµ=0.33 mm Qσ2=1.2 mm2 and Qcv=3.3 respectively.
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6.1.4 All climates 0<AI<∞

The statistics for the limiting climates described above indicate that the mean and the
variance of the IET tend to increase, and the mean and variance of the event magni-
tude tend to decrease with increasing aridity. However the variability of event timing
relative to the mean (T s

cv [1, 1] ) behaviour tends to peak at intermediate aridity, while5

the relative variability of event magnitudes continues to increase with increasing aridity.
Figures 3 and 4 summarises how the statistics of saturation excess inter-event times
and event magnitudes change as a function of aridity for various levels of the demand
ratio.

Strong demand (small β) results in a higher mean and variance but a low coefficient10

of variation of inter-event times and as a result more regular, less clustered events, with
a maximum T s

cv [1,1] well into in the arid region (see Fig. 3). Strong demand also results
in a higher mean and variance of the event magnitude at the same aridity, but they
tend to decrease as the aridity increases (see Fig. 4). While the mean and variance
decrease with increasing aridity, the coefficient of variation of the event magnitude15

increases.
The lower the demand, relative to the storage capacity (larger β), the larger the

mean and variance of the IET and the greater the tendency for temporal clustering of
events (larger T s

cv [1, 1]). The tendency for saturation excess events to cluster in time
is most pronounced in deep stores when supply equals demand i.e. AI=1. This is20

consistent with the observation by Milly (2001) that as the storage capacity increases
the maximum variance in soil moisture tends to peak nearer AI=1.

These results are at least qualitatively consistent with observations of decreasing
mean annual runoff with aridity (Budyko, 1974) and an increasing coefficient of variation
of annual runoff with a reduction in mean annual rainfall (Potter et al., 2005). Tempo-25

ral clustering has been observed in the flood record (Franks and Kuczera, 2002; Kiem
et al., 2003) however this has been attributed to interactions between the Inter-decadal
Pacific Oscillation and the El Níno Southern Oscillation changing rainfall patterns. Our
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quantification of temporal clustering here however is based upon on a stationary de-
scription of climate. We have as yet found no literature quantifying saturation excess
in terms of its temporal dynamics with which we can compare to the statistics derived
here.

In summary our results suggest the following about threshold storage triggering: In5

very arid climates the relative variability of the timing of events is low, as is the contri-
bution of saturation excess to the water balance, as evidenced by a low mean event
magnitude. However the relative variability of the event magnitude Qcv is high; Satura-
tion excess events in semi-arid environments appear to be prone to high coefficients of
variation in both the magnitude of events and the time between events, while contribut-10

ing a non-negligible proportion of the overall water balance; Sub-humid climates have
a large proportion of rainfall converted to runoff. The magnitude of these events occur
with a lower Qcv than semi-arid climates and temporal clustering may be a significant
feature of the dynamics; In humid climates storage threshold events contribute a sig-
nificant proportion of the water balance and the variability (relative to the mean) of the15

timing and magnitude of these events is low.

6.2 Frequency magnitude relationships

It is often the case that we can only observe directly the triggering of events but not the
flux. For example the occurrence of soil moisture above a critical value may indicate
that macropores are required to have been filled and as a result preferential flow trig-20

gered. However, it is typically not possible to measure the flux through either the soil
matrix or the macropores, but only relative changes in storage. The timing of trigger-
ing and the magnitude of the events however are related to one another through soil
moisture storage. In this section we investigate the relationships between the statistics
of event timing and event magnitude.25
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6.2.1 Comparison of means

One would expect that the more frequently threshold storage events occur the greater
the contribution of saturation excess to the overall water balance. In fact for the thresh-
old storage model the dimensionless mean saturation excess event magnitude equals
the dimensionless mean saturation excess frequency i.e. Qµ

/
γ=t̄b

/
T s
µ [1, 1] as shown5

by comparing Eq. (11) and Eq. (15). This makes physical sense, for example when
T s
µ [1,1]=∞, Qµ must be zero, and when t̄b=T

s
µ
[
s0,1

]
, Qµ must equal γ. Noting that

N̄=T s
µ [1,1]

/
t̄b describes the mean number of storms in the IET, it can be shown using

Eq. (10) that Qµ
/
γ=t̄b

/
T s
µ [1,1] is equivalent to Ea=γ

(
N̄−1

)/
N̄. More specifically this

indicates that the inputs (rainfall) must be greater than the losses (actual evaporation)10

in the time between successive events. Intuitively this must be true irrespective the na-
ture of the loss function L [s], however whether such a relationship between mean event
magnitude and mean event frequency should hold for more general loss functions L [s]
is yet to be shown.

6.2.2 Comparison of relative variability15

In addition to the issue of observability mentioned in Sect. 6.2.1 the relationship be-
tween the variability of event magnitudes and the variability of the timing of event trig-
gering may have important ecological implications. For example Sher et al. (2004)
noted that the temporal variability of resource supply events in arid ecosystems may
be as or even more important ecologically than the variability in the magnitude of such20

events, particularly in semi-arid and arid ecosystems. Here we compare how the co-
efficient of variation of inter-event times relates to the coefficient of variation of event
magnitude in terms of their ratio T s

cv [1, 1]/Qcv as a function of aridity (see Fig. 5).
For all climates T s

cv [1, 1]≤Qcv . In humid climates T s
cv [1, 1]∼Qcv meaning event timing

and the magnitude of event per storm are both similarly variable with respect to their25

means. In very arid climates T s
cv [1,1]<Qcv indicating less variability in event timing

relative to its mean in comparison to event magnitude. The ratio approaches a step
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function in the limit of a large storage capacity, relative to the climatic forcing i.e. large
β (or α not shown), and the step occurs around an aridity index of 1. Mean soil mois-
ture essentially behaves the same way when the storage capacity is large i.e. it is very
close to saturation for all AI<1 and very close to zero for all AI>1. The smaller the
storage capacity relative to the climate forcing (small β) the lower the aridity at which5

T s
cv [1,1] and Qcv can be differentiated and the more gradual and smaller the difference

with increasing aridity in comparison to larger capacities. Despite increased variability
in the timing of saturation excess events for deeper stores for sub-humid and semi-arid
environments (see Fig. 3), event magnitude variability increases much more rapidly
with increasing aridity and continues to do so for AI>1.10

In terms of the issue of observability our results suggest that the temporal variabil-
ity of event triggering may give some understanding of the relative variability of event
magnitude in humid climates as they are of a similar magnitude in this region. Based
upon the relationship between mean event frequency and mean event magnitude the
variance of event magnitude per storm event might even be estimated reasonably. In15

arid climates T s
cv [1, 1] is much less than Qcv and tells little about the event magnitude

variability but none the less provides a reasonably certain measure (i.e. a standard
deviation about the same as the mean) of the variability of event timing. Returning
to the hypothesis of Sher et al. (2004), our results suggest that the variability of the
timing of potential resource supply events, despite being of long duration on average20

is actually quite low in comparison to the mean. The temporal variability is also much
less than the variability in the magnitude of supply at least on a per storm basis. This
suggests that adaptations to cope with temporal variability may be particularly benefi-
cial in arid climates as it may be a reasonably certain (low variability) component of the
hydrological variability.25

6.3 Relationship between temporal statistics and storage

For some hydrological processes neither the flux nor the triggering are directly ob-
servable at the space and time scales at which they occur in the field. This is true in
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particular for preferential flow. What is measurable, at least at the point scale, is soil
moisture storage. Therefore we explore here first how the temporal statistics relate to
the statistics of storage and then the sensitivity of the temporal statistics to the initial
storage.

6.3.1 Relationship between temporal statistics and statistics of storage5

Figure 6a shows the relationship between the dimensionless mean saturation excess
inter-event time T s

µ [1, 1] and the mean storage Sµ for constant evaporative demand
(constant β). This can also be seen in the time series of storage Fig. 6c corresponding
to the symbols in Fig. 6a. The mean inter-event time increases nonlinearly as the mean
storage decreases, and also increases with increasing storage capacity (increasing10

values of β). The mean inter-event time is most sensitive to changes in low mean soil
moisture. This sensitivity is also high at very high mean soil moisture when the storage
capacity is large relative to the climatic forcing (large β).

It is evident by comparing the time series Fig. 6c and Fig. 6a that high mean soil
moisture is related to low soil moisture variability and frequent event triggering. Low15

soil moisture variability is also associated with a low mean soil moisture and infrequent
triggering. High variability in soil moisture tends to be associated with intermediate Sµ
as there is a greater potential for soil moisture fluctuations to explore the entire capacity.
This large variability in soil moisture is also associated with high temporal clustering.
It can be seen from the relationship between T s

cv [1,1] and the variance of storage Sσ220

(Fig. 6b) that for a constant evaporative demand (constant β), the maximum T s
cv [1, 1]

occurs when Sσ2 is also a maximum. This appears to be true for all but the smallest
stores (see β=1 in Fig. 6b) but in this instance the degree of temporal clustering is low
in any case.
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6.3.2 The role of initial storage s0

So far we have largely discussed the controls on the inter-event time, that is the time
between successive occurrences of storage at capacity. The analytical derivation of
first passage time statistics allows us to determine the climate controls on the statis-
tical properties of the time to trigger saturation excess flow for the first time since an5

arbitrary initial storage. Figure 1b shows this first passage time as τ1, the time to reach
s=1 for the first time since storage was initially at s0. If for example we have taken a
measurement of storage the FPT statistics Tx

[
s0, 1

]
can tell us something of the ex-

pected value and the variability of the time till the next saturation excess event due to
variability in the timing and magnitude of rainfall. Figure 7 shows the effect of initial10

storage on the mean and the coefficient of variation of the time till the next saturation
excess triggering.

It can be seen that the mean first passage time Tµ
[
s0,1

]
decreases as s0 increases

towards saturation and is more sensitive to s0 at higher soil moisture values. Also,
as expected, the mean time till the next event is longer the higher the aridity (com-15

pare ratios of α and β in Fig. 7). On the other hand the coefficient of variation of the
first passage time Tcv

[
s0, 1

]
increases with increasing initial storage. At low s0 the

more humid the climate the lower Tcv
[
s0, 1

]
but this transitions at higher s0 such that

the more balanced climates and systems with deeper storage capacity relative to the
climatic forcing (larger α and β) tend to have a larger Tcv

[
s0, 1

]
.20

Values of Tcv
[
s0,1

]
when s0 is low are ≤1. This can be explained for the case of arid

climates where the closer s0 is to zero, as well as being close to Sµ, only extreme rainfall
will trigger an event and for reasons discussed in Sect. 6.1.2 event triggering displays
similar but scaled statistical properties to the rainfall. The more humid the climate the
further away s0=0 is to Sµ and one would expect a more steady, less variable, increase25

in storage towards capacity and therefore a lower Tcv
[
s0, 1

]
.

On the other hand when a storage threshold flow event has just occurred (s0=1) the
mean time till the next flow event is a minimum and Tcv

[
s0, 1

]
is a maximum. Tcv

[
s0, 1

]
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is a measure of our uncertainty, relative to our expected value, of the timing of the next
storage threshold event due to our uncertainty in the timing and magnitude of rainfall.
This implies that if a saturation excess event has just occurred, while we can expect
a second event to occur sooner than at any other time, our ability to predict when
that will be, relative to the mean time, is actually at its poorest. The high variability of5

inter-event times when the initial soil moisture is at saturation we believe is due to the
greater potential for both much longer periods between events as a result of the greater
potential for drying, as well as a high potential for shorter inter-event times due to the
high potential for event triggering when storage is near capacity.

The variability of nonlinear storage dependent hydrological processes seems sensi-10

tive to an initial storage near a threshold. Zehe and Blöschl (2004) also found the vari-
ability of modelled plot and hillslope scale runoff to be highest when initial soil moisture
was at a threshold. In their case they considered a single prescribed rainfall event but
multiple realisations of sub-scale spatial variability of initial soil moisture in relation to
the spatially averaged initial soil moisture. When the spatially averaged soil moisture15

was at the threshold between matrix flow and preferential flow the variability of mod-
elled runoff was at its greatest. Tcv

[
s0, 1

]
is a measure of our uncertainty in the timing

of the next event due to the randomness of the timing and magnitude of subsequent
rainfall events, given an initial storage. Additionally the variability in runoff described
by Zehe and Blöschl (2004) is a measure of uncertainty in the magnitude of the event20

due to an uncertain structure of sub-scale soil moisture. Combining these two results
it suggests that the time between two consecutive threshold flow events for which the
flux is poorly predictable is itself highly uncertain.

7 Summary and conclusions

Typically in hydrology we consider the transformation of a flux to a flux. Here instead25

we consider the transformation of event timing to event timing. We have analytically de-
rived statistics of the temporal dynamics of the flow triggering due to a rainfall intensity
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threshold and a soil moisture threshold as models for infiltration excess and saturation
excess runoff generating mechanisms, respectively. For the saturation excess mecha-
nism though we have gone further to also consider how the temporal dynamics relates
to the statistical properties of soil moisture storage and the magnitude of runoff events.
The major conclusions are summarised as follows:5

– The rainfall intensity threshold produces an inter-event time distribution that is a
scaled version of the storm arrival distribution. The scaling factor is related the
probability of exceeding the intensity threshold on a single event.

– The soil moisture storage threshold on the other hand leads to temporal clustering
of events.10

– The mean and the variance of the inter-event time increase with increasing climate
aridity however the coefficient of variation of the inter-event time (a measure of the
temporal clustering) passes through a maximum which occurs around an aridity
index of 1 for systems with a deep storage capacity.

– The mean and the variance of the saturation excess runoff magnitude per storm15

decrease with increasing aridity, however the coefficient of variation of this event
magnitude increases with increasing aridity.

– The dimensionless mean saturation excess event magnitude was found to be
equal to the dimensionless mean event frequency.

– The coefficient of variation of saturation excess event magnitude is always greater20

than or at least equal to the coefficient of variation of the time between saturation
excess events. This difference increases with increasing climate aridity.

– High temporal variability of saturation excess events tends to be associated with
an intermediate mean and a high variance of soil moisture.
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– When beginning with an arbitrary initial soil moisture the expected time till the next
event is a minimum but the variability relative to that value is a maximum when
initial storage is at the threshold.

We consider our results to be potentially limited to relatively small spatial scales
where such thresholds have the greatest potential to be expressed as discrete events.5

At larger spatial scales the effect of spatio-temporal rainfall and runoff is expected
to dominate runoff dynamics although nonlinear and threshold processes have been
shown to strongly influence the flood frequency curve at a range of spatial scales
(Blöschl and Sivapalan, 1997). Additionally climate is subject to long term variabil-
ity and change. Future research should therefore consider how spatio-temporal rainfall10

and climate fluctuations impact the temporal dynamics as well as its relationships to
runoff magnitude and storage within the landscape.

Appendix A Derivation of saturation excess temporal statistics

The integral equation for the pdf of first passage times, gT , for a deterministic process
interrupted by bursts of instantaneous Poisson noise (a shot noise process) was given
by (Laio et al., 2001) as:

∂g
(
t|s0
)

∂t
= −L

[
s0
] ∂g (t|s0

)
∂s0

− λ g
(
t|s0
)
+ λ
∫ sξ
s0

fH
[
z − s0

]
g
(
t|z
)

dz (A1)

where fH is the pdf of storm depths, z is a dummy variable of integration, sξ is an
arbitrary threshold soil moisture, and λ=1

/
t̄b the mean storm frequency. The raw

moments of the first passage time are by definition:

T s
n
[
s0, sξ

]
=
∫ ∞
0

tngT
(
t|s0
)

dt (A2)
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Equation (A2) motivates us to generalise the derivation to higher order moments by
multiplying Eq. (A1) by tn (instead of t to just get the mean as done by Laio et al. (2001).
So multiplying Eq. (A1) by tn, assuming storm depths are exponentially distributed
and integrating by parts the time derivative and substituting T s

n
[
s0, sξ

]
, results in the

following integro-differential equation for the first passage time moments:

−nT s
n−1

[
s0, sξ

]
= −L

[
s0
] dT s

n
[
s0, sξ

]
ds0

− λT s
n
[
s0, sξ

]
+

λ
γ

∫ sξ
s0

e−(z−s0)/γT s
n
[
z, sξ

]
dz

(A3)
Integrating by parts the integral term in Eq. (A3), differentiating the entire equation

with respect to s0, and substituting for the integral term by rearranging Eq. (A3), leads
to a second order ordinary differential equation for the first passage time moments T s

n
:

L
[
s0
] d2T s

n

ds2
0

+
dT s

n

ds0

(
dL
[
s0
]

ds0
−

L
[
s0
]

γ
+ λ

)
=

dT s
n−1

ds0
− n

γ
T s
n−1 (A4)

The general solution to Eq. (A4) is given by:

T s
n [s0, sξ] = C2 + C1

∫ s0

1
B1 [w,1] dw +

∫ s0

1
B2 [w,1] dw (A5)

where

ln(B1[a, b]) = α (a − 1) +
∫ b
a

1
L[x]

(
λ +

dL[x]

dx

)
dx (A6)

B2 [w,1] = −B1[w, 1]
∫ 1

w

nB1 [1, y ]

L[y ]

(
αTn−1

[
y, sξ

]
−

dTn−1
[
y, sξ

]
dy

)
dy (A7)

and w, x and y are dummy variables of integration. Two boundary conditions are
required to solve for the coefficients C1 and C2. The first boundary condition is derived

2879

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/2853/2006/hessd-3-2853-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/2853/2006/hessd-3-2853-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 2853–2897, 2006

Temporal dynamics
of threshold events

G. McGrath et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

when the process begins at the threshold (Laio et al., 2001; Masoliver, 1987) and is
obtained by substituting s0=sξ in Eq. (A3) to get:

L
[
s0
] dT s

n
[
s0, sξ

]
ds0

∣∣∣∣∣
s0=sξ

= nT s
n−1

[
sξ, sξ

]
+ λT s

n
[
sξ, sξ

]
] (A8)

The second boundary condition is required to describe the time to reach the thresh-
old having begun at the lower boundary and is obtained from substitution of s0=0 in
Eq. (A3) (Laio et al., 2001; Masoliver, 1987) resulting in:

−nT s
n−1

[
0, sξ

]
= −λT s

n
[
0, sξ

]
+

λ
γ

∫ sξ
0

e−(z−s0)/γT s
n
[
z, sξ

]
dz (A9)

The coefficient C1 can be obtained by differentiating Eq. (A5) with respect to s0,
inserting this into Eq. (A8), substituting s0=sξ and then solving for C1 , which is depen-
dent upon C2. Substituting Eq. (A5) in the second boundary condition Eq. (A9) gives a
second equation for C1 also dependent upon C2. Equating these two expressions and
solving for C2 gives:

C2 =

(
B3[3] + nTn−1[0, sξ]/λ

B3[1]
−

B4[3] − nTn−1[sξ, sξ]

B4[1]

)
÷
(

e−αsξ

B3[1]
+

λ
B4[1]

)
(A10)

where

B4[A] = L[sξ]BA[sξ,1] − λ
∫ 1

s0

BA[w,1]dw (A11)

and

B3[A] =
∫ sξ
0

αe−zα
∫ z
1
BA[w,1]dw dz +

∫ 1

0
BA[w, 1]dw (A12)
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The subscript A is a reference to BA as given by Eq. (A6) or Eq. (A7). Substituting
Eq. (A10) into one of the original expressions for C1 gives:

C1 = −
(
nTn−1

[
sξ, sξ

]
− eαsξ

(
nTn−1

[
0, sξ

]
+ λB3 [3]

)
−B4 [3]

)
÷
(
λeαsξB3 [1]+B4 [1]

)
(A13)

The central moments can be derived from these raw moments using the relationships
described in Table A1 and as discussed in Sect. 5.2.
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Appendix B List of Symbols

Symbol Description Units

Soil parameters

Iξ Infiltration capacity LT−1

w0 Storage capacity L
s Normalised soil moisture storage –
s0 Initial soil moisture –
sξ Threshold soil moisture –

Climate parameters

h Storm depth L
γ Mean storm depth L
tb Inter storm duration T
t̄b Mean inter-storm duration (λ−1) T
Em Potential evaporation LT−1

Imax Max within storm rainfall intensity LT−1

ς Mean Imax LT−1

Probability terms

fX Probability density X−1

gT First passage time probability density T−1

P [ ] Probability –
µ Mean X a

σ Standard deviation X a

σ2 Variance X2 a

a Units X correspond to the random variable
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Symbol Description Units

Probability terms

cv Coefficient of variation –
ε Coefficient of skewness –
κ Coefficient of kurtosis –

Dimensionless hydrological parameters and statistics

α Supply ratio –
β Demand ratio –
AI Aridity index –
Ea Mean actual evaporation L
N̄ Mean number of storms in the IET –
Qx Saturation excess event magnitude statistic
Sx Soil moisture storage statistic –
T I
x
[
Iξ
]

Infiltration excess IET statistic
T r
x Storm IET statistic a

T s
x
[
s0, sξ

]
Statistic of the time to reach sξ since an ini-
tial soil moisture s0

b

a Units correspond to Qµ [L], Qσ2 [L2], and Qcv [−].
b Units correspond to Tµ [T], Tσ2 [T2], Tcv [−], Tε [−], and Tκ [−].
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Table 1. Storm and infiltration excess inter-event statistics.

Statistic Storm Infiltration excess

Tµ t̄b t̄b eIξ/ζ

Tσ2 t̄2
b

(
t̄b eIξ/ζ

)2

Tcv 1 1
Tε 2 2
Tκ 6 6
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Table 2. Summary statistics of the saturation excess inter-event times and event magnitudes
in three limiting climates.

Statistic Rainfall Humid Intermediate Arid
AI=0 AI=1 AI=∞

T s
µ [1,1] t̄b t̄b t̄b (1+α) t̄b eα

T s
σ2 [1, 1] t̄2

b t̄2
b

2
3

(
α3+2α2+2α+1

)
t̄2
b

(
t̄be

α)2

T s
cv [1, 1] 1 1

√
3√
2

√
α3+2α2+2α+1

1+α ≥1 1

T s
ε [1,1] 2 2

√
3
(

4α5+20α4+40α3+45α2+30α+10
)

5
√

2α(α(α+3)+3)+3
≥2 2

T s
κ [1,1] 6 6 B1α

7+B2α
6+B3α

5+B4α
4+B5α

3+B6α
2+B7α+B8

35(2α(α(α+3)+3)+3)2 −3≥6 a 6

Qµ γ γ γ
1+α

γ
eα

Qσ2 γ2 γ2 (1+2α)

(1+α)2 γ
2 2eα−1

e2α γ2

Qcv 1 1
√

1+2α
√

2eα−1

a Constants Bi are given by B1=408, B2=3276, B3=11 214, B4=22 050, B5=27 720, B6=22 680,
B7=11 340, B8=2835.
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Table A1. Relationships between raw and central moments.

Central moment Relation to raw moments

Mean Tµ=T1

Variance Tσ2=T2−T
2
1

Coefficient of skewness Tε=
T3−3T1T2+2T 3

1

(T2−T 2
1 )

3
2

Kurtosis excess Tκ=
T4−4T1T3+6T 2

1 T2−3T 4
1

(T2−T 2
1 )2 −3
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Fig. 1. Definition of the more general first passage time τ1 and the inter-event time τ2 and
τ3 for (a) a threshold rainfall intensity infiltration excess trigger, where in this example within
storm rainfall intensities above the soils infiltration capacity Iξ=80 mm/day trigger flow; and (b)
a storage threshold triggered flow, occurring when s=1. s0 denotes the initial soil moisture.
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Fig. 2. Conceptual description of the relationship between the rainfall inter-event time (IET)
probability density (pdf) and the IET pdf for (a) infiltration excess and (b) saturation excess.
For (a) the dashing corresponds to rainfall (solid) and infiltration-excess (dashed) with Iξ/ς=5
and t̄b=1 day. For (b) dashing corresponds to rainfall (continuous), an aridity index AI=0 (also
continuous), AI=1 (large dashes) and an AI=∞ (small dashes) with t̄b=1 day, and α=5 . Inter-
event time pdf estimated at AI=1 from a continuous simulation of 105 saturation excess events
using Eq. (5).

2892

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/2853/2006/hessd-3-2853-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/2853/2006/hessd-3-2853-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 2853–2897, 2006

Temporal dynamics
of threshold events

G. McGrath et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

(a)
0.5 1 1.5 2 2.5 3

AI=Α�Β

1

2

3

4

5

lo
g
1
0

T
Μs
@1

,1
D�

t� b

Β=1

Β=10

Β=100

(b)
0.5 1 1.5 2 2.5 3

AI=Α�Β

1

2

3

4

5

lo
g
1
0

T
Σ

2
s
@1

,1
D�

t� b
2

Β=1
Β=10

Β=100

(c)

0.5 1 1.5 2 2.5 3

AI=Α�Β

2

4

6

8

T
c
v

s
@1

,1
D

Β=1

Β=10

Β=100

Figure 3: Variation of statistics of the storage threshold inter-event time with arid-
ity index showing (a) mean T s

µ [1, 1] (b) variance T s
σ2 [1, 1] and (c) coefficient of

variation T s
cv [1, 1] for constant β = 1, 10, and 100 (dashed, dotted and continuous

respectively).

43

Fig. 3. Variation of statistics of the storage threshold inter-event time with aridity index showing
(a) mean T s

µ [1, 1] (b) variance T s
σ2 [1, 1] and (c) coefficient of variation T s

cv [1, 1] for constant
β=1, 10, and 100 (dashed, dotted and continuous respectively).
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Figure 4: Variation of statistics of the storage threshold magnitude with aridity
index showing (a) mean Qµ (b) variance Qσ2 and (c) coefficient of variation Qcv for
constant β = 1, 10, and 100 (dashed, dotted and continuous respectively).
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Fig. 4. Variation of statistics of the storage threshold magnitude with aridity index showing (a)
mean Qµ (b) variance Qσ2 and (c) coefficient of variation Qcv for constant β=1, 10, and 100
(dashed, dotted and continuous respectively).
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Fig. 5. Ratio of the coefficient of variation of event timing Tcv [1,1] and the coefficient of variation
of the event magnitude Qcv as a function of aridity. Dashing corresponds to constant β=1 (large
dashed), β=10 (dotted) and β=100 (continuous).
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Fig. 6. Relationship between soil moisture storage and the temporal dynamics showing (a)
Mean inter-event time T s

µ [1, 1] as a function of mean soil moisture Sµ; (b) Coefficient of variation
of the inter-event time T s

cv [1, 1] as a function of the variance of soil moisture Sσ2 ; and (c)
Soil moisture time series corresponding to symbols in (a) and (b). Dashing corresponds to
constant β=1 (large dashed), β=10 (dotted) and β=100 (continuous). Time series generated
as described in Sect. 5.1 with t̄b=1 day, Em=0.5 mm/day, w0=5 mm and γ=0.307 mm (2),
γ=0.536 mm (4), and γ=1.66 mm (3).
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